R19

Code No: R1941021

Set No. 1

[7]

IV B.Tech I Semester Advance Supplementary Examinations, March - 2023 SWITCHGEAR & PROTECTION

(Electrical and Electronics Engineering)

Time: 3 hours Max. Marks: 75

Answer any FIVE Questions
ONE Question from Each unit
All Questions Carry Equal Marks

UNIT I

- a) Describe the operating principle of an air blast circuit breaker with the help of a diagram. [7] b) Discuss principle of arc interruption in an oil circuit breaker. [8] (OR) 2 a) Develop the expression for rate of rise of restriking voltage. [7] b) In a short circuit test on 220kV, 3-ph CB with earthed neutral the following results were obtained: fault pf=0.3, recovery voltage=0.9 of full line value, the breaking current is symmetrical and the restriking transient had a neutral frequency of 15kHz. Determine RRRV, assuming that short circuit is an earthed fault. [8] **UNIT II** a) Compare R-X characteristics of impedance relay, reactance relays and mho
- relays. [7]
 b) Show that the torque on the disc of an induction relay is maximum when the
 - phase difference between the two fluxes is 90 deg. And also write the merits and demerits of static relays. [8]
- 4 a) Explain with a neat sketch the operation of an induction type over current relay. What are the functions of current and time multiplier settings associated with such relay?
 - b) Classify the types of over current relays and discuss their applications [8]

R19

Code No: R1941021 **R1**

Set No. 1

5	a)	Explain briefly about stator fault protection in generator	[7]
	b)	The primary of a transformer winding has 1000 turns while secondary has 500	
		turns. If the primary CT ratio is 100:5, find the CT ratio required in the	
		secondary side to establish circulatory current scheme.	[8]
		(OR)	
6	a)	How do you protect transformer against incipient faults?	[7]
	b)	A 50 MVA, 3 phase, 33 kV synchronous generator is protected by the Merz-	
		Price protection using 1000/5 ratio CTs. It is provided with restricted earth	
		fault protection with the earthing resistance of 7.5 Ω . Calculate the percentage	
		of winding unprotected in each phase against earth faults if the minimum	
		operating current of the relay is 0.5 A.	[8]
		UNIT IV	
7	a)	Explain with diagram the high impedance bus bar differential protection	
		scheme.	[7]
	b)	Explain with the aid of circuit and phasor diagrams the function of a Peter-son	
		coil in a 3-phase system. What are permissible practical deviations from	
		resonance in the tuning of the Peterson coil?	[8]
		(OR)	
8	a)	Explain the principle of operation of a Translay Relay protection for feeders	[7]
	b)	Explain 3-zone distance protection of a transmission line	[8]
		UNIT V	
9	a)	Explain the operation of numerical over current protection using numerical	
		relays.	[7]
	b)	Explain in detail about the internal causes of over voltages?	[8]
		(OR)	
10	a)	What is lightning? Describe the mechanism of lightning discharge.	[7]
	b)	A transmission line has a capacitance of 0.1 μ F/ph. Calculate the inductance of	
		the Peterson coil to neutralize the effect of capacitance of complete length of	
		the line, 96% of the line and 85% of the line. Assume 50Hz supply and	
		comment on result.	[8]
		comment on result.	