Code No: **R1941053**

IV B.Tech I Semester Advance Supplementary Examinations, March - 2023

MACHINE LEARNING

(Common to Computer Science & Engineering and Information Technology) Time: 3 hours Max. Marks: 75

Answer any FIVE Questions ONE Question from Each unit All Questions Carry Equal Marks *****

UNIT I

- 1 a) What is target function? How do you determine the target function? Explain with the help of an example.
 - b) Consider a hypothesis space defined over the instances given in the following table. Give a trace of CANDIDATE-ELIMINATION algorithm learning from these instances and show G and S boundaries.

Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport	
Sunny	Warm	Normal	Strong	Warm	Same	Yes	
Sunny	Warm	High	Strong	Warm	Same	Yes	
Rainy	Cold	High	Strong	Warm	Change	No	503
Sunny	Warm	High	Strong	Cool	Change	Yes	[8]
	Sky Sunny Sunny Rainy Sunny	SkyAirTempSunnyWarmSunnyWarmRainyColdSunnyWarm	SkyAirTempHumiditySunnyWarmNormalSunnyWarmHighRainyColdHighSunnyWarmHigh	SkyAirTempHumidityWindSunnyWarmNormalStrongSunnyWarmHighStrongRainyColdHighStrongSunnyWarmHighStrong	SkyAirTempHumidityWindWaterSunnyWarmNormalStrongWarmSunnyWarmHighStrongWarmRainyColdHighStrongWarmSunnyWarmHighStrongCool	SkyAirTempHumidityWindWaterForecastSunnyWarmNormalStrongWarmSameSunnyWarmHighStrongWarmSameRainyColdHighStrongWarmChangeSunnyWarmHighStrongCoolChange	SkyAirTempHumidityWindWaterForecastEnjoySportSunnyWarmNormalStrongWarmSameYesSunnyWarmHighStrongWarmSameYesRainyColdHighStrongWarmChangeNoSunnyWarmHighStrongCoolChangeYes

(OR)

- 2 a) Explain the intuition behind the Least Mean Square Error (LMS) with the help of an example and Describe an algorithm to learn the optimal weights to [7] minimize LMS.
 - b) Explain the fundamental property of inductive inference with the help of an [8] example. Also discuss the advantages of inductive inference.

UNIT II

3 a) Consider the training examples given in the following table. Using ID3 find the best attribute for the root node of the decision tree. Take a threshold of 80K for 'Taxable Income' attribute and covert the continuous values into two categorical values.

Tid	Refund	Marital Status	Taxable Income	Cheat	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced	95K	Yes	
6	No	Married	60K	No	
7	Yes	Divorced	220K	No	
8	No	Single	85K	Yes	
9	No	Married	75K	No	
10	No	Single	90K	Yes	

b) Explain the different ways of handling continuous attributes in decision tree learning.

(OR)

[7]

[7]

[7]

[8]

Code No: **R1941053**

R19

Set No. 1

4 Why are shorter decision trees preferred over longer ones? [7] a) How noise in the data leads to an overfitting problem? Explain with the help b) of an example. [8] **UNIT III** 5 Illustrate Vapnik-Chervonenkis dimension with the help of example. [7] a) b) Discuss FOIL rule-based learning algorithm with the help of an example. [8] (OR)6 Discuss about First-Order rule learning in detail. a) [7] Explain the concepts of Probably Approximately Correct (PAC) learnability [8] b) and PAC criterion. **UNIT IV** Explain how SVM handles non-linearly separable data. 7 a) [7] Explain back-propagation algorithm with the help of an example. Take error b) function of your choice. [8] (OR) 8 Explain the motivation behind using Neural Networks rather than the Logistic a) Regression model. [7] Discuss SVM optimization problem and the concept of duality. b) [8] UNIT V 9 Given the following training data, classify a new instance $X_{new} = (age > 40,$ a)

Income = high, Student = yes, Credit rating = fair) using the Naive-Bayes classifier.

Age	Income	Student	Credit rating	Buys compter ?
≤ 30	high	no	fair	no
\leq 30	high	no	excellent	no
30 40	high	no	fair	yes
> 40	medium	no	fair	yes
> 40	low	yes	fair	yes
> 40	low	yes	excellent	no
31 40	low	yes	excellent	yes
\leq 30	medium	no	fair	no
\leq 30	low	yes	fair	yes
> 40	medium	yes	fair	yes
\leq 30	medium	yes	excellent	yes
31 40	medium	no	excellent	yes
31 40	high	yes	fair	yes
> 40	medium	no	excellent	no

b) Explain the gradient descent algorithm for the logistic regression model. (OR)

- 10 a) Describe the Naive Bayesian method of classification and assumptions that the method makes.
 - b) Consider the following Bayesian network. Suppose you observe it is cloudy and raining. What is the probability that the gross is wet?

|""|"|"|"||"|||

[8] [7]

[7]