

III B. Tech I Semester Regular Examinations, February-2022 LINEAR INTEGRATED CIRCUITS AND APPLICATIONS

(Electronics and Communication Engineering)

Time: 3 hours

Max. Marks: 75

Answer any **FIVE** Questions **ONE** Question from **Each unit** All Questions Carry Equal Marks

UNIT-I

1. a) Explain the operation of an improved version of current mirror [8M] circuit with a neat circuit diagram. b) Design a regulated power supply using three-terminal IC to give [7M] V_o=+5 V, I_o=0.6 A, Vi=12 V_{DC}, T_A=60^oC. (OR) 2. Explain the operation of dual input balanced output differential a) [8M] amplifier (ac equivalent) and derive the expressions for input resistance and output resistance. For an Op-amp, PSRR is 70 dB, CMRR is 10⁵, and differential b) [7M] mode gain is 10^5 . The output voltage changes by 20 V in 4 µs. Calculate: i) Common mode gain ii) Slew rate. UNIT-II 3. Draw the circuit diagram of a logarithmic amplifier using a) [8M] Op-Amps and explain its operation. b) Design an Op-amp based circuit to produce an output [7M] $-(V_1+2V_2-5V_3)$, where V_1 , V_2 and V_3 are the input voltages.

(OR)

- 4. a) With a circuit diagram explain the working of a current to [8M] voltage converter.
 - b) What are the differences between conventional rectifier and [7M] precision rectifier? Draw the circuit diagram of a full-wave precision rectifier using Op-amp.

UNIT-III

5. a) Consider the Op-amp high pass filter with 20 dB/decade roll-off [8M] shown below figure. Calculate the value of R if C = 0.001 μ F and $f_c = 15$ kHz.

Code No: R1931041

b) Draw the circuit for first-order lowpass filter and high pass filter [7M] and derive the expressions for cut-off frequencies.

(OR)

- 6. a) Give the design procedure for 60 dB/decade high pass filter in [8M] Butterworth configuration when the desired cut-off frequency is 200 Hz.
 - b) For the circuit shown, determine the values of R_1 and R_2 to get a [7M] cut-off frequency of 5 kHz. Assume $C_1 = 0.01 \ \mu F$.

UNIT-IV

7.	a)	Design a 555 astable multivibrator to operate at 10 kHz with	[8M]
		40% duty cycle. Assume necessary data.	
	b)	Draw the circuit of a 565 PLL IC and explain its working.	[7M]
		(OR)	
8.	a)	Design a square-wave generator using 555 timer for a frequency of 150 Hz and 70% duty cycle. Assume C = 0.1 mF.	[8M]
	b)	How a phase locked loop is used as a FM demodulator? Explain	[7M]
	,	with a neat diagram.	
		<u>UNIT-V</u>	
9.	a)	Explain the counter type ADC with a neat block diagram and list	[8M]
		out its disadvantages.	
	b)	A 4-bit R-2R ladder type D/A converter having resistor values of	[7M]
		R = 10 k Ω and 2R = 20 k Ω , uses V _R of 10V.	
		Find: i) the resolution of the D/A converter, and	
		ii) I_0 for a digital input of 1101.	
		(OR)	
10.	a)	Explain the working of dual slope-type of ADC with a neat diagram.	[8M]
	1 \		[==] []

b) Explain the principle of inverted R-2R type DAC and write its [7M] advantages and disadvantages.

2 of 2