III B. Tech I Semester Regular Examinations, February-2022 LINEAR INTEGRATED CIRCUITS AND APPLICATIONS

(Electronics and Communication Engineering)
Time: 3 hours
Max. Marks: 75

Answer any FIVE Questions ONE Question from Each unit All Questions Carry Equal Marks

UNIT-I

1. a) Explain the operation of an improved version of current mirror circuit with a neat circuit diagram.
b) Design a regulated power supply using three-terminal IC to give $\mathrm{V}_{\mathrm{o}}=+5 \mathrm{~V}, \mathrm{I}_{\mathrm{o}}=0.6 \mathrm{~A}, \mathrm{Vi}=12 \mathrm{~V} \mathrm{DC}, \mathrm{T}_{\mathrm{A}}=60^{\circ} \mathrm{C}$.
(OR)
2. a) Explain the operation of dual input balanced output differential amplifier (ac equivalent) and derive the expressions for input resistance and output resistance.
b) For an Op-amp, PSRR is 70 dB , CMRR is 10^{5}, and differential mode gain is 10^{5}. The output voltage changes by 20 V in $4 \mu \mathrm{~s}$. Calculate:
i) Common mode gain
ii) Slew rate.

UNIT-II

3. a) Draw the circuit diagram of a logarithmic amplifier using Op-Amps and explain its operation.
b) Design an Op-amp based circuit to produce an output $-\left(\mathrm{V}_{1}+2 \mathrm{~V}_{2}-5 \mathrm{~V}_{3}\right)$, where $\mathrm{V}_{1}, \mathrm{~V}_{2}$ and V_{3} are the input voltages.
(OR)
4. a) With a circuit diagram explain the working of a current to voltage converter.
b) What are the differences between conventional rectifier and precision rectifier? Draw the circuit diagram of a full-wave precision rectifier using Op-amp.

UNIT-III

5. a) Consider the Op-amp high pass filter with $20 \mathrm{~dB} /$ decade roll-off shown below figure. Calculate the value of R if $\mathrm{C}=0.001 \mu \mathrm{~F}$ and $\mathrm{f}_{\mathrm{c}}=15 \mathrm{kHz}$.

1 of 2
b) Draw the circuit for first-order lowpass filter and high pass filter and derive the expressions for cut-off frequencies.
(OR)
6. a) Give the design procedure for 60 dB /decade high pass filter in Butterworth configuration when the desired cut-off frequency is 200 Hz .
b) For the circuit shown, determine the values of R_{1} and R_{2} to get a cut-off frequency of 5 kHz . Assume $\mathrm{C}_{1}=0.01 \mu \mathrm{~F}$.

UNIT-IV
7. a) Design a 555 astable multivibrator to operate at 10 kHz with 40\% duty cycle. Assume necessary data.
b) Draw the circuit of a 565 PLL IC and explain its working.

(OR)

8. a) Design a square-wave generator using 555 timer for a frequency of 150 Hz and 70% duty cycle. Assume C $=0.1 \mathrm{mF}$.
b) How a phase locked loop is used as a FM demodulator? Explain with a neat diagram.

UNIT-V

9. a) Explain the counter type ADC with a neat block diagram and list out its disadvantages.
b) A 4-bit R-2R ladder type D/A converter having resistor values of $R=10 \mathrm{k} \Omega$ and $2 \mathrm{R}=20 \mathrm{k} \Omega$, uses V_{R} of 10 V .
Find: i) the resolution of the D / A converter, and
ii) I_{o} for a digital input of 1101 .
(OR)
10. a) Explain the working of dual slope-type of ADC with a neat
diagram.
b) Explain the principle of inverted R-2R type DAC and write its advantages and disadvantages.
4-20.40
