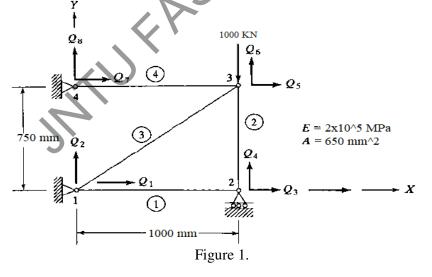
1"1"111"1"1111

Code No: R1941032

IV B. Tech I Semester Regular Examinations, November - 2022 FINITE ELEMENT METHODS

R19

(Common to Mechanical Engineering and Automobile Engineering) Time: 3 hours Max. Marks: 75

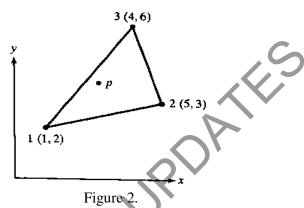

Answer any FIVE Questions **ONE** Question from Each unit All Questions Carry Equal Marks ****

UNIT-I

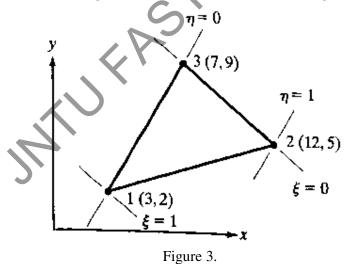
- List out advantages and engineering applications of FEM. 1 [8] a) b) What is the need of discretization in FEM? Explain with suitable [7] example.
 - (OR)
- Explain plane stress and plane strain condition with suitable examples. 2 a) [8] [7]
 - Discuss about stress-strain relation for Isotropic material. b)

UNIT-II

- Derive stiffness matrix for a beam element. 3 [15] (OR) Consider the four bar truss shown in Figure 1. It is given that $E = 2 \times 10^5$ 4 [15]
- MPa and A = 650 mm^2 for each element. Determine nodal displacements and stresses in each element.

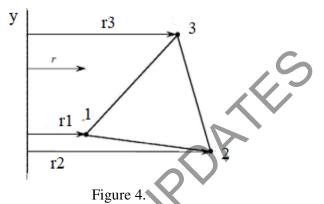


Set No. 1


R19

UNIT-III

5 a) The nodal coordinates of the triangular element are shown in Figure 2. [8] At the interior point P, the x-coordinate is 3.3 and $N_1 = 0.3$ Determine N_2, N_3 and the y-coordinate at point P.


b) Determine the Jacobian for the (x, y) (ξ, η) transformation for the [7] element shown in Figure 3. Also, find the area of the triangle.

Set No. 1

(OR)

6 a) Evaluate the axisymmetric stiffness matrix 'K' of the triangular element [8] shown in the Figure 4. Consider the coordinates of nodes as 1 (2, 1), 2 (4, 0), and 3 (3,2). Also assume E = 2.6 GPa and v = 0.2

- b) Discuss axisymmetric formulation with examples. [7] UNIT-IV
- 7 a) Derive shape functions for a four- node quadrilateral element and [8] discuss salient points.
 - b) Write short notes on isoparametric elements and their advantages. [7] (OR)
- 8 a) Explain one and two-point point Gaussian quadrature. [7]
 - b) Evaluate the integral $\int_{-1}^{+1} \left[3e^x + x^2 + \frac{1}{(x+2)} \right] dx$ by applying one and [8] two-point point Gaussian quadrature.

UNIT-V

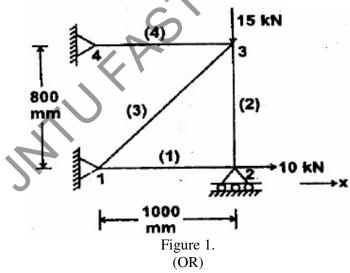
A metallic fin, with thermal conductivity k =360 W/m°C, 0.1 cm thick, [15] and 10 cm long, extends from a plane wall whose temperature is 235°C. Determine the temperature distribution and amount of heat transferred from the fin to the air at 20°C with h = 9 W/m²- °C. Take the width of fin to be 1 m.

(OR)

10 Determine natural frequencies of a stepped bar whose details are given [15] below: Areas of 2 segments of bar are 50 mm2 and 100 mm² and lengths are 500 mm and 1000 mm respectively. Assume E = 200 GPa and mass density is 8000 Kg/m³. The 100 mm² segment of bar is fixed at one end and another end is connected to 50 mm² segment.

Set No. 2

IV B. Tech I Semester Regular Examinations, November - 2022 FINITE ELEMENT METHODS


(Common to Mechanical Engineering and Automobile Engineering) Time: 3 hours Max. Marks: 75

Answer any FIVE Questions **ONE** Question from Each unit All Questions Carry Equal Marks ***** **UNIT-I**

- List and briefly describe the five typical areas of engineering where the [8] 1 a) finite element method is applied.
 - Discuss the factors to be considered in discretization of a domain. b) [7] (OR)
- 2 Explain the properties of stiffness matrix. a) [7]
 - List and briefly describe the general steps of the finite element method. b) [8]

UNIT-II

A four bar truss shown in Figure 1. Determine nodal displacement and [15] 3 element stresses by taking E = 200 GPa, area of each element A = 500 mm^2 .

- Compare the characteristics of the beam element with the truss element. [7] 4 a)
 - What is a beam? Derive the hermite shape functions in a beam element? b) [8]

R19

UNIT-III

5 a) For point 'P' located inside the triangle shown in Figure 2. The shape [8] functions N_1 and N_2 are 0.15 and 0.25 respectively. Determine the xand y-coordinates of point P.

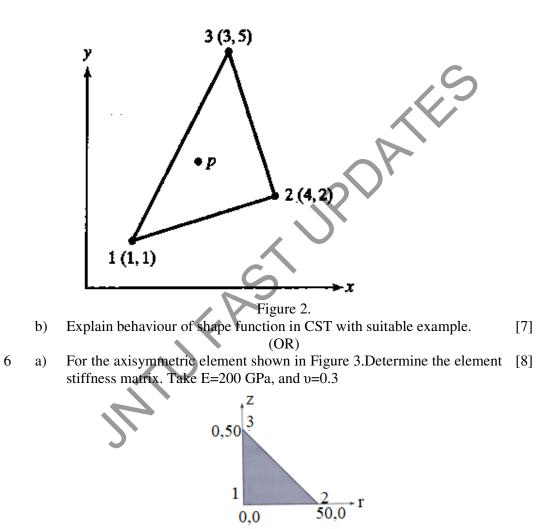
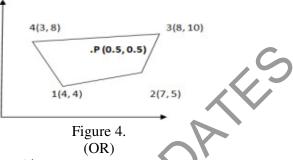


Figure 3. b) Discuss a few applications of axisymmetric elements. [7]


2 of 3

R19

Set No. 2

UNIT-IV

- 7 a) Derive Shape functions for a four- node quadrilateral element and [8] discuss salient points.
 - b) Evaluate jacobian matrix at $\xi = \eta = 0.5$ for the linear quadrilateral [7] element shown in Figure 4.

- 8 a) Evaluate the integral $\int_{-1}^{+1} \cos \frac{\pi x}{2}$ by applying one and two-point point [8] Gaussian quadrature. Compare the results with exact results and comment.
 - b) Explain one and two-point point Gaussian quadrature. [7] UNIT-V
- A metallic fin, with thermal conductivity k =360 W/m°C, 0.1 cm thick, [15] and 10 cm long, extends from a plane wall whose temperature is 235°C. Determine the temperature distribution and amount of heat transferred from the fin to the air at 20°C with h = 9 W/m²- °C. Take the width of fin to be 1 m.

(OR)

- 10 Consider the axial vibrations of a steel bar shown in the Figure 5. [15]
 - Develop global stiffness and mass matrices,
 - Determine the natural frequencies?

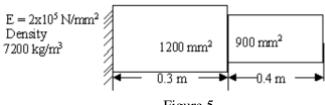
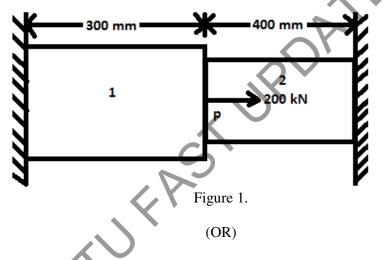


Figure 5.

R19

Set No. 3

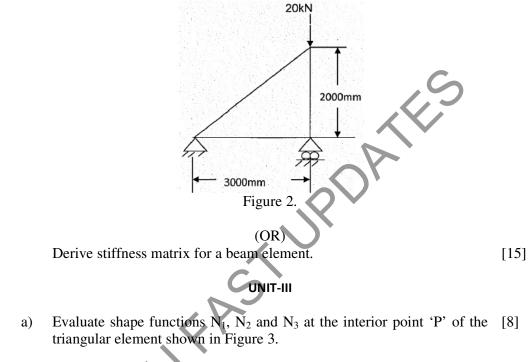

IV B. Tech I Semester Regular Examinations, November – 2022 FINITE ELEMENT METHODS

(Common to Mechanical Engineering and Automobile Engineering) Time: 3 hours Max. Marks: 75

Answer any FIVE Questions ONE Question from Each unit All Questions Carry Equal Marks ***** UNIT-I

1

Consider a bar as shown in Figure 1. An axial load of 200kN is applied [15] at a point P. Take $A_1=2400 \text{ mm}^2$, $E_1=70 \times 10^9 \text{ N/mm}^2$, $A_2=600 \text{ mm}^2$ and $E_2 = 200 \times 10^9 \text{ N/mm}^2$. Calculate the following (i) Nodal displacement at point, P (ii) Stress in each element (iii) Reaction force.


2 a) In a plane strain problem $\sigma_x = 1400$ MPa $\sigma_y = -100$ MPa and 200 GPa, [7] v=0.3. Determine σ_z

b) List out advantages and engineering applications of FEM. [8]

1 of 3

UNIT-II

3 A Plane truss structure shown in Figure 2. Determine the nodal [15] displacements and support reactions. Take $E = 2x10^5$ MPa and area of each element A = 1500 mm²

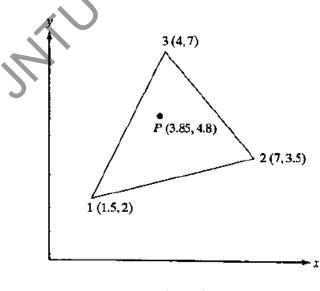


Figure 3. 2 of 3

4

5

- b) Explain behaviour of shape function in CST with suitable example. [7] (OR)
- 6

An axisymmetric triangular element is described by the following [15] details. Determine the element stresses at the centroid for Young's modulus 80 GPa and Poisson's Ratio 0.25.

	Node 1	Node 2	Node 3
Radial Coordinate from the axis (r)	5 mm	l mm	3 mm
Axial coordinate (z)	5 mm	5 mm	2mm
Deformation in radial direction (u)	0.02 mm	0.06 mm	0.01 mm
Deformation in axial direction (u)	-0.04 mm	0	0.02 mm
	UN	IT-IV	N

7 a) Derive shape functions for a four- node quadrilateral element and [8] discuss salient points.

- b) Write short notes on isoparametric elements and their advantages. [7] (OR)
- 8 a) Explain one and two-point point Gaussian quadrature [7]
 - b) Evaluate the integral $\int_{-1}^{+1} \left[3e^x + x^2 + \frac{1}{(x+2)} \right] dx$ by applying one and [8] two-point point Gaussian quadrature.

UNIT-V

A metallic fin, with thermal conductivity k = 360 W/m°C, 0.1 cm thick, [15] and 10 cm long, extends from a plane wall whose temperature is 235°C. Determine the temperature distribution and amount of heat transferred from the fin to the air at 20°C with h = 9 W/m²- °C. Take the width of fin to be 1 m.

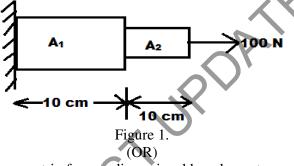
(OR)

- 10 Consider the axial vibrations of a steel bar shown in the Figure 4. [15]
 - Develop global stiffness and mass matrices,
 - Determine the natural frequencies?

 $E = 2x10^{5} \text{ N/mm}^{2}$ Density 1200 mm^{2} 900 mm^{2} 0.3 mFigure 4.

Set No. 4

IV B. Tech I Semester Regular Examinations, November – 2022 FINITE ELEMENT METHODS


(Common to Mechanical Engineering and Automobile Engineering) Time: 3 hours Max. Marks: 75

Answer any FIVE Questions ONE Question from Each unit All Questions Carry Equal Marks *****

UNIT-I

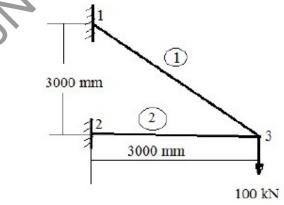
1

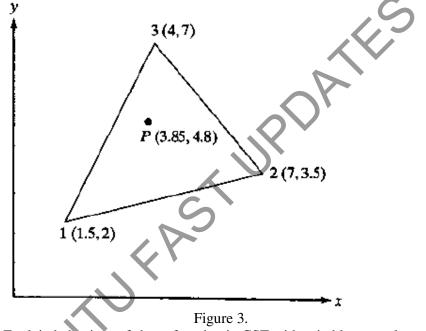
Consider a bar as shown in Figure 1. An axial load of 100 N is applied. [15] Take Young's modulus $E=2 \times 105 \text{ N/mm}^2$, $A_1= 2 \text{ cm}^2$, $A_2 = 1 \text{ cm}^2$. Calculate the following (i) Nodal displacement (ii) Stress in each element and (iii) Reaction forces

- 2 a) Derive stiffness matrix for one dimensional bar element. [8]
 - b) Differentiate global and local coordinates. Also explain the significance [7] of node numbering in FEM.

UNIT-II

3 A truss structure shown in Figure 2, is carrying a vertical load of [15] 100 KN. Determine the displacement and stresses. Take E = 210 GPa, area of each element A = 1200 mm²




Figure 2.

R19

(OR)

- 4 a) Compare the characteristics of the beam element with the truss element. [7]
 - b) What is a beam? Derive the hermite shape functions in a beam element? [8] UNIT-III
- 5 a) Evaluate shape functions N_1 , N_2 and N_3 at the interior point 'P' of the [8] triangular element shown in Figure 3.

b) Explain behaviour of shape function in CST with suitable example [7] (OR)

An axisymmetric triangular element is described by the following [15] details. Determine the element stresses at the centroid for the Young's Modulus 80 GPa and Poisson's Ratio 0.25.

	Node 1	Node 2	Node 3
Radial Coordinate from the axis (r)	5 mm	l mm	3 mm
Axial coordinate (z)	5 mm	5 mm	2mm
Deformation in radial direction (u)	0.02 mm	0.06 mm	0.01 mm
Deformation in axial direction (u)	-0.04 mm	0	0.02 mm

6

R19

UNIT-IV

- 7 a) Derive the element 'B' matrix for a one dimensional quadratic element. [7]
 b) Explain the applications of isoparametric elements in two dimensional [8] stress analysis.
 - (OR)
- 8 a) Evaluate the integral $\int_{-1}^{+1} \left[3e^x + x^2 + \frac{1}{(x+2)} \right] dx$ by applying one and [8] two-point point Gaussian quadrature.
 - b) Explain one and two-point point Gaussian quadrature. [7] UNIT-V
- 9 Derive the conductivity matrix for 1-D fin element? And also derive the [15] load vector if the lateral surface and tip is exposed to a heat transfer coefficient of 'h' and ambient temperature 'T α '?

(OR)

10 Discuss the methodology to solve the Eigenvalue problem for the [15] estimation of natural frequencies of a stepped bar?

MUFAS