IV B. Tech I Semester Regular Examinations, November - 2022
 FINITE ELEMENT METHODS

(Common to Mechanical Engineering and Automobile Engineering)
Time: 3 hours
Max. Marks: 75

Answer any FIVE Questions
 ONE Question from Each unit All Questions Carry Equal Marks

 UNIT-I

1 a) List out advantages and engineering applications of FEM.
b) What is the need of discretization in FEM? Explain with suitable example.
(OR)
2 a) Explain plane stress and plane strain condition with suitable examples.
b) Discuss about stress-strain relation for Isotropic material.

UNIT-II
3
Derive stiffness matrix for a beam element.
(OR)
Consider the four bar truss shown in Figure1. It is given that $E=2 \times 10^{5}$ MPa and $\mathrm{A}=650 \mathrm{~mm}^{2}$ for each element. Determine nodal displacements and stresses in each element.

Figure 1.

UNIT-III
5 a) The nodal coordinates of the triangular element are shown in Figure 2. [8] At the interior point P , the x -coordinate is 3.3 and $\mathrm{N}_{1}=0.3$ Determine $\mathrm{N}_{2}, \mathrm{~N}_{3}$ and the y -coordinate at point P .

b) Determine the Jacobian for the $(x, y)-(\xi, \eta)$ transformation for the element shown in Figure 3. Also, find the area of the triangle.

Figure 3.
(OR)
6 a) Evaluate the axisymmetric stiffness matrix ' K ' of the triangular element shown in the Figure 4 . Consider the coordinates of nodes as $1(2,1), 2$ $(4,0)$, and $3(3,2)$. Also assume $\mathrm{E}=2.6 \mathrm{GPa}$ and $v=0.2$

b) Discuss axisymmetric formulation with examples.

UNIT-IV
7 a) Derive shape functions for a four- node quadrilateral element and discuss salient points.
b) Write short notes on isoparametric elements and their advantages.
(OR)
a) Explain one and two-point point Gaussian quadrature.
b) Evaluate the integral $\int_{-1}^{+1}\left[3 e^{x}+x^{2}+\frac{1}{(x+2)}\right] d x$ by applying one and two-point point Gaussian quadrature.

UNIT-V

9 A metallic fin, with thermal conductivity $\mathrm{k}=360 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}, 0.1 \mathrm{~cm}$ thick, and 10 cm long, extends from a plane wall whose temperature is $235^{\circ} \mathrm{C}$. Determine the temperature distribution and amount of heat transferred from the fin to the air at $20^{\circ} \mathrm{C}$ with $\mathrm{h}=9 \mathrm{~W} / \mathrm{m}^{2}-{ }^{\circ} \mathrm{C}$. Take the width of fin to be 1 m .
(OR)
10 Determine natural frequencies of a stepped bar whose details are given below: Areas of 2 segments of bar are 50 mm 2 and $100 \mathrm{~mm}^{2}$ and lengths are 500 mm and 1000 mm respectively. Assume E $=200 \mathrm{GPa}$ and mass density is $8000 \mathrm{Kg} / \mathrm{m}^{3}$. The $100 \mathrm{~mm}^{2}$ segment of bar is fixed at one end and another end is connected to $50 \mathrm{~mm}^{2}$ segment.

IV B. Tech I Semester Regular Examinations, November - 2022

FINITE ELEMENT METHODS
(Common to Mechanical Engineering and Automobile Engineering)
Time: 3 hours
Max. Marks: 75

Answer any FIVE Questions
 ONE Question from Each unit All Questions Carry Equal Marks

 UNIT-I

1 a) List and briefly describe the five typical areas of engineering where the finite element method is applied.
b) Discuss the factors to be considered in discretization of a domain.
(OR)
2 a) Explain the properties of stiffness matrix.
b) List and briefly describe the general steps of the finite element method.

UNIT-II
A four bar truss shown in Figure 1. Determine nodal displacement and element stresses by taking $\mathrm{E}=200 \mathrm{GPa}$, area of each element $\mathrm{A}=500$ mm^{2}.

Figure 1.
(OR)
4 a) Compare the characteristics of the beam element with the truss element. [7]
b) What is a beam? Derive the hermite shape functions in a beam element? [8]

UNIT-III

a) For point ' P ' located inside the triangle shown in Figure 2. The shape functions N_{1} and N_{2} are 0.15 and 0.25 respectively. Determine the xand y-coordinates of point P.

b) Explain behaviour of shape function in CST with suitable example. (OR)
6 a) For the axisymmetric element shown in Figure 3.Determine the element stiffness matrix. Take $\mathrm{E}=200 \mathrm{GPa}$, and $v=0.3$

Figure 3.
b) Discuss a few applications of axisymmetric elements.

UNIT-IV

7 a) Derive Shape functions for a four- node quadrilateral element and discuss salient points.
b) Evaluate jacobian matrix at $\xi=\eta=0.5$ for the linear quadrilateral element shown in Figure 4.

Figure 4. (OR)
a) Evaluate the integral $\int_{-1}^{+1} \cos \frac{\pi x}{2}$ by applying one and two-point point Gaussian quadrature. Compare the results with exact results and comment.
b) Explain one and two-point point Gâussian quadrature.

UNIT-V
A metallic fin, with thermal conductivity $\mathrm{k}=360 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}, 0.1 \mathrm{~cm}$ thick, and 10 cm long, extendŝ from a plane wall whose temperature is $235^{\circ} \mathrm{C}$. Determine the temperature distribution and amount of heat transferred from the fin to the air at $20^{\circ} \mathrm{C}$ with $\mathrm{h}=9 \mathrm{~W} / \mathrm{m}^{2}-{ }^{\circ} \mathrm{C}$. Take the width of fin to be 1 m .
(OR)
10 Consider the axial vibrations of a steel bar shown in the Figure 5.

- Develop global stiffness and mass matrices,
- Determine the natural frequencies?

Figure 5.

3 of 3

IV B. Tech I Semester Regular Examinations, November - 2022
FINITE ELEMENT METHODS
(Common to Mechanical Engineering and Automobile Engineering)
Time: $\mathbf{3}$ hours
Max. Marks: 75

Answer any FIVE Questions
 ONE Question from Each unit All Questions Carry Equal Marks

 UNIT-I

1 Consider a bar as shown in Figure 1. An axial load of 200kN is applied at a point P. Take $A_{1}=2400 \mathrm{~mm}^{2}, E_{1}=70 \times 10^{9} \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{~A}_{2}=600 \mathrm{~mm}^{2}$ and $E_{2}=200 \times 10^{9} \mathrm{~N} / \mathrm{mm}^{2}$. Calculate the following (i) Nodal displacement at point,P (ii) Stress in each element (iii) Reaction force.

Figure 1.
(OR)
2 a) In a plane strain problem $\sigma_{\mathrm{x}}=1400 \mathrm{MPa}, \sigma_{\mathrm{y}}=-100 \mathrm{MPa}$ and 200 GPa , [7] $\mathrm{v}=0.3$. Determine σ_{z}
b) List out adyantages and engineering applications of FEM.

R19

UNIT-II

A Plane truss structure shown in Figure 2. Determine the nodal displacements and support reactions. Take $\mathrm{E}=2 \times 10^{5} \mathrm{MPa}$ and area of each element $\mathrm{A}=1500 \mathrm{~mm}^{2}$

Derive stiffness matrix for a beam element.

UNIT-III

5 a) Evaluate shape functions N_{1}, N_{2} and N_{3} at the interior point ' P ' of the triangular element shown in Figure 3.

Figure 3.
2 of 3
b) Explain behaviour of shape function in CST with suitable example.

6 An axisymmetric triangular element is described by the following details. Determine the element stresses at the centroid for Young's modulus 80 GPa and Poisson's Ratio 0.25 .

	Node 1	Node 2	Node 3
Radial Coordinate from the axis (r)	5 mm	1 mm	3 mm
Axial coordinate (z)	5 mm	5 mm	2 mm
Deformation in radial direction (u)	0.02 mm	0.06 mm	0.01 mm
Deformation in axial direction (u)	-0.04 mm	0	0.02 mm
UNIT-IV			

7 a) Derive shape functions for a four- node quadrilateral element and discuss salient points.
b) Write short notes on isoparametric elements and their advantages.
a) Explain one and two-point point Gaussian quadrature
b) Evaluate the integral $\int_{-1}^{+1}\left[3 e^{x}+x^{2}+\frac{1}{(x+2)}\right] d x$ by applying one and two-point point Gaussian quadrature.

UNIT-V

9 A metallic fin, with thermal conductivity $\mathrm{k}=360 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}, 0.1 \mathrm{~cm}$ thick, and 10 cm long extends from a plane wall whose temperature is $235^{\circ} \mathrm{C}$. Determine the temperature distribution and amount of heat transferred from the fin to the air at $20^{\circ} \mathrm{C}$ with $\mathrm{h}=9 \mathrm{~W} / \mathrm{m}^{2}-{ }^{\circ} \mathrm{C}$. Take the width of fin to bel m .

(OR)

10 Consider the axial vibrations of a steel bar shown in the Figure 4.

- Develop global stiffness and mass matrices,
- Determine the natural frequencies?

Figure 4.

IV B. Tech I Semester Regular Examinations, November - 2022
 FINITE ELEMENT METHODS

(Common to Mechanical Engineering and Automobile Engineering)
Time: 3 hours
Max. Marks: 75

Answer any FIVE Questions
 ONE Question from Each unit All Questions Carry Equal Marks

 UNIT-I

1
Consider a bar as shown in Figure 1. An axial load of 100 N is applied. Take Young's modulus $E=2 \times 105 \mathrm{~N} / \mathrm{mm}^{2,} \mathrm{~A}_{1}=2 \mathrm{~cm}^{2}, A_{2}=1 \mathrm{~cm}^{2}$. Calculate the following (i) Nodal displacement (ii) Stress in each element and (iii) Reaction forces

Figûre 1.
(OR)
2 a) Derive stiffness matrix for one dimensional bar element.
b) Differentiate global and local coordinates. Also explain the significance of node numbering in EEM.

UNIT-II
3 A truss structure shown in Figure 2, is carrying a vertical load of 100 KN . Determine the displacement and stresses. Take $\mathrm{E}=210 \mathrm{GPa}$, area of each element $\mathrm{A}=1200 \mathrm{~mm}^{2}$

Figure 2.

Set No. 4

(OR)
4 a) Compare the characteristics of the beam element with the truss element.
b) What is a beam? Derive the hermite shape functions in a beam element?

UNIT-III
5 a) Evaluate shape functions N_{1}, N_{2} and N_{3} at the interior point ' P ' of the triangular element shown in Figure 3.

Figure 3.
b) Explain behaviour of shape function in CST with suitable example

An axisymmetric triangular element is described by the following details. Determine the element stresses at the centroid for the Young's Modulus 80 GPa and Poisson's Ratio 0.25 .

	Node 1	Node 2	Node 3
Radial Coordinate from the axis (r)	5 mm	1 mm	3 mm
Axial coordinate (z)	5 mm	5 mm	2 mm
Deformation in radial direction (u)	0.02 mm	0.06 mm	0.01 mm
Deformation in axial direction (u)	-0.04 mm	0	0.02 mm

Set No. 4

UNIT-IV

7 a) Derive the element ' B ' matrix for a one dimensional quadratic element.
b) Explain the applications of isoparametric elements in two dimensional stress analysis.
(OR)
8 a) Evaluate the integral $\int_{-1}^{+1}\left[3 e^{x}+x^{2}+\frac{1}{(x+2)}\right] d x$ by applying one and two-point point Gaussian quadrature.
b) Explain one and two-point point Gaussian quadrature.

UNIT-V
9 Derive the conductivity matrix for 1-D fin element? And also derive the load vector if the lateral surface and tip is exposed to a heat transfer coefficient of ' h ' and ambient temperature ' $T \alpha$ '?
(OR)
10
Discuss the methodology to solve the Eigenvalue problem for the estimation of natural frequencies of a stepped bar?

3 of 3

