Code No: R1941032

2

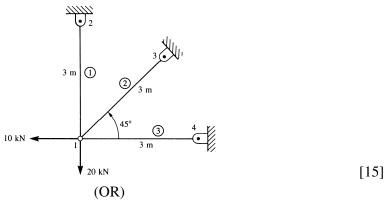
R19

[4]

IV B.Tech I Semester Advance Supplementary Examinations, March - 2023 FINITE ELEMENT METHODS

(Common to Mechanical Engineering and Automobile Engineering) Time: 3 hours Max. Marks: 75

Answer any FIVE Questions ONE Question from Each unit All Questions Carry Equal Marks *****

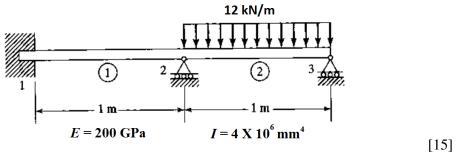

UNIT-I

a) Find the approximate deflection of a simply supported beam of length 'L' subjected to a point load 'p' at the centre of the span using the Rayleigh-Ritz method. [10]
b) Discuss about plane stress and plane strain. Give examples for each case. [5]

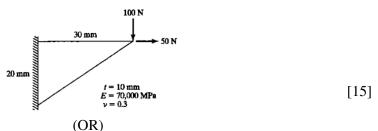
- a) Explain penalty method for treatment of boundary conditions. [7]
 - b) Explain the factors to be considered in selecting interpolation functions. [4]
 - c) Write a note on local and global node numbering.

UNIT-II

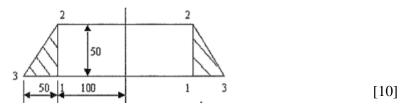
For the plane trusses shown in Figure, determine the horizontal and vertical displacements of node 1, stresses in each element and support reactions. All elementshave E = 210 GPa and $A = 4 \times 10^{-4}$ m².



R19


Code No: R1941032

4 For the beam shown in the figure, determine the slopes at node 2 and node 3 and vertical deflection at the midpoint of the distributed load.



UNIT-III

5 Determine the deflection at the point of load application and element stress using one element model. Consider plane stress condition.

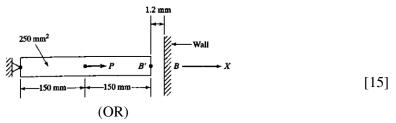
6 a) An axi-symmetric ring element is shown in the figure. Derive the matrices [B] and [D]. Take $E= 2X10^5$ N/mm² and $\mu=0.3$. All dimensions are in mm.

b) For a point P located inside the triangle, the shape functions N1 and N2 are 0.15 and 0.25 respectively. Determine x and y coordinates of point P.

2 of 3

Code No: R1941032

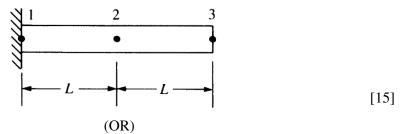
7



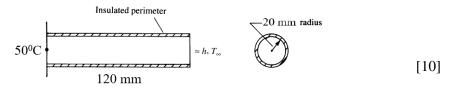
[5]

[5]

UNIT-IV


A load $P = 60 \times 10^3$ N is applied as shown. Determine the displacement field, stress and support reactions in the body. Take $E = 20 \times 10^3$ N/mm². Use two 1D Quadratic elements for discretization and solve the problem.

- 8 a) Derive the shape functions of 1D cubic element in natural coordinates. [4]
 - b) Derive the shape functions of two dimensional four noded quadrilateral element.
 - c) Evaluate the integral by two and three point gauss quadrature rule.


$$I = \int_{-1}^{1} x^3 - 2x^2 + 5x - 7 \, dx$$
[6]

9 Determine the Eigen values and Eigen vectors of the bar shown in figure. Take E=200 Gpa, $\rho = 7862 \text{ kg/m}^3$, A=6 cm² and L=2.5 m.

- 10 a) Define lumped mass and consistent mass. Derive the consistent mass matrix of 2 node bar element.
 - b) Determine the temperature distribution along the length of the solid rod shown in Figure with an insulated perimeter. The temperature at the left end is a constant 50° C and the free-stream temperature is 20° C.

Let $h = 25 \text{ W/m}^{20}\text{C}$ and $K = 20 \text{ W/m}^{0}\text{C}$. Consider 3 element model.

3 of 3