IV B.Tech I Semester Advance Supplementary Examinations, March - 2023
 FINITE ELEMENT METHODS
 (Common to Mechanical Engineering and Automobile Engineering)

Time: 3 hours
Max. Marks: 75

Answer any FIVE Questions
 ONE Question from Each unit
 All Questions Carry Equal Marks

UNIT-I

1 a) Find the approximate deflection of a simply supported beam of length ' L ' subjected to a point load ' p ' at the centre of the span using the Rayleigh-Ritz method.
b) Discuss about plane stress and plane strain. Give examples for each case.
(OR)
2 a) Explain penalty method for treatment of boundary conditions.
b) Explain the factors to be considered in selecting interpolation functions.
c) Write a note on local and global node numbering.

UNIT-II

For the plane trusses shown in Figure, determine the horizontaland vertical displacements of node 1, stresses in each element and support reactions. All elementshave $\mathrm{E}=210 \mathrm{GPa}$ and $\mathrm{A}=4 \times 10^{-4} \mathrm{~m}^{2}$.

(OR)

1 of 3

Set No. 1

4 For the beam shown in the figure, determine the slopes at node 2 and node 3 and vertical deflection at the midpoint of the distributed load.

[15]

UNIT-III

5 Determine the deflection at the point of load application and element stress using one element model. Consider plane stress condition.

(OR)
6 a) An axi-symmetric ring element is shown in the figure. Derive the matrices [B] and [D]. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mu=0.3$. All dimensions are in mm .

b) For a point P located inside the triangle, the shape functions N 1 and N 2 are 0.15 and 0.25 respectively. Determine x and y coordinates of point P.

UNIT-IV
A load $\mathrm{P}=60 \times 10^{3} \mathrm{~N}$ is applied as shown. Determine the displacement field, stress and support reactions in the body. Take $\mathrm{E}=20 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}$. Use two 1D Quadratic elements for discretization and solve the problem.

8 a) Derive the shape functions of 1D cubic element in natural coordinates.
b) Derive the shape functions of two dimensional four noded quadrilateral element.
c) Evaluate the integral by two and three point gauss quadrature rule.

$$
\begin{equation*}
I=\int_{-1}^{1} x^{3}-2 x^{2}+5 x-7 d x \tag{6}
\end{equation*}
$$

UNIT - V
9 Determine the Eigen values and Eigen vectors of the bar shown in figure. Take $\mathrm{E}=200 \mathrm{Gpa}, \rho=7862 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{~A}=6 \mathrm{~cm}^{2}$ and $\mathrm{L}=2.5 \mathrm{~m}$.

(OR)
10 a) Define lumped mass and consistent mass. Derive the consistent mass matrix of 2 node bar element.
b) Determine the temperature distribution along the length of the solid rod shown in Figure with an insulated perimeter. The temperature at the left end is a constant $50^{\circ} \mathrm{C}$ and the free-stream temperature is $20^{\circ} \mathrm{C}$. Let $\mathrm{h}=25 \mathrm{~W} / \mathrm{m}^{20} \mathrm{C}$ and $\mathrm{K}=20 \mathrm{~W} / \mathrm{m}^{0} \mathrm{C}$. Consider 3 element model.

3 of 3

