Code No: R1931024

Time: 3 hours

III B. Tech I Semester Regular Examinations, February-2022 **DIGITAL SIGNAL PROCESSING**

(Electrical and Electronics Engineering)

Max. Marks: 75

Answer any **FIVE** Questions **ONE** Question from **Each unit** All Questions Carry Equal Marks

UNIT-I

1.	a)	i) Define the periodicity of a signal.	[8M]
		ii) Determine whether the DT signal, $x[n] = \cos\left[\left(\frac{12\pi}{5}\right)n\right]$, is	
		periodic or not. If yes, find its fundamental period.	
	b)	Find the solution for the difference equation	[7M]
		y[n] = ay[n-1]	
		as a function of initial condition y[0].	
~		(OR)	103.61
2.	a)	Show that the sufficient condition for an LTI system to be BIBO	[8M]
	• •	stable is $\sum_{k=-\infty}^{\infty} h[k] < \infty$.	
	b)	Determine the inverse z-transform of $H(z) = \frac{z^2}{(z-0.2)(z+0.8)}$	[7M]
		considering that $H(z)$ is a causal system.	
		UNIT-II	
3.	a)	A discrete-time signal is given by $x[n] = [-1, 1, 1, 1]$. Find 4-point DFT of $x[n]$	[8M]
	b)	State and prove time-shifting property of DFS.	[7M]
)	(OR)	[]
4.	a)	Explain how the linear convolution is computed using DFT and	[8M]
	,	IDFT, with an example.	[•]
	b)	Find the 8-point DFT of $x[n] = [1, -1, 1, -1, 1, -1, 1, -1]$ using	[7M]
	,	radix-2 DITFFT algorithm.	
		<u>UNIT-III</u>	
5.	a)	Explain how the s-plane is mapped to z-plane in impulse	[7M]
		invariant transformation.	
	b)	Explain the design procedure of analog Butterworth lowpass	[8M]
		filter.	

1 of 2

SET - 1

(OR)

- 6. a) Explain how an analog filter is transformed to a digital filter by [8M] using bilinear transformation method.
 - b) Explain how digital lowpass filter is transformed to digital [7M] highpass, bandpass and bandstop filter using frequency transformation.

UNIT-IV

- 7. a) The type-III linear-phase FIR filter is characterized by $h[n] = -h[M 1 n], 0 \le n \le M 1, M \text{ odd}$ [8M]
 - Find the magnitude response, $|H(\Omega)|$.
 - b) Design a linear phase lowpass FIR digital filter using rectangular [7M] window to meet the following specifications: $\Omega_c = 0.1\pi$ and L = 7.

(OR)

- 8. a) What do you understand by distortion-less transmission of a [8M] digital filter? Define (i) Phase delay (ii) Group delay.
 - b) Design a linear phase highpass FIR filter using frequency [7M] sampling method to meet the following specifications: $\Omega_c = 0.25\pi$ and L = 9.

<u>UNIT-V</u>

- 9. a) The signal $x[n] = [0 \ 2 \ 4 \ 6 \ 8]$ is interpolated using the [8M] interpolated filter sequence $b_k = [0.5 \ 1 \ 0.5]$ and the interpolation factor is 2. Determine the interpolated sequence.
 - b) Give the frequency domain description of an up-sampler. [7M] (OR)
- 10. a) Derive an expression for z-transform of output of a down- [8M] sampler.
 - b) If $x[n] = [0 \ 2 \ 4 \ 6 \ 8 \ 1 \ 3 \ 5 \ 7 \ 9]$, find and plot $x_u[n] = x\left[\frac{n}{2}\right]$ [7M] and $x_d[n] = x[3n]$.
