Code No: R1931043

III B. Tech I Semester Regular Examinations, February-2022 DIGITAL COMMUNICATIONS

(Electronics and Communication Engineering)

Time: 3 hours

Max. Marks: 75

Answer any **FIVE** Questions **ONE** Question from **Each unit** All Questions Carry Equal Marks

UNIT-I

1.	a)	Draw the block diagram of PCM system and explain the function of each block.	[8M]
	b)	A signal is obtained by the multiplication of $x_1(t) = A_1 \sin(\omega_0 t)$ and $x_2(t) = A_2 \cos(\omega_0 t)$. The resulting signal is to be sent by delta modulation method. Find the minimum step size required to avoid slope overload distortion.	[7M]
		(OR)	
2.	a)	Draw the block diagram of closed-loop DPCM system and explain its operation.	[8M]
	b)	Explain slope-overload noise and granular noise.	[7M]
		UNIT-II	
3.	a)	What is the phase ambiguity problem of BPSK scheme? How is it overcome?	[8M]
	b)	Sketch the constellation of QPSK scheme. Illustrate the effect of the attenuation on the constellation at the receiver.	[7M]
		(OR)	
4.	a)	Distinguish between DPSK and DEPSK modulation schemes.	[8M]
	b)	Draw the power spectral density of BASK, BPSK and BFSK signals.	[7M]
		<u>UNIT-III</u>	
5.	a)	When the input noise is white, show that the impulse response of matched filter is $h(t) = K s(t_o - t)$, where K is a positive real constant and $s(t)$ is the input signal.	[8M]
	b)	Explain the operation of non-coherent FSK receiver.	[7M]
		(OR)	
6.	a)	Derive an expression for probability of error of BPSK modulation scheme.	[8M]
	b)	Explain the working of coherent PSK receiver.	[7M]

Code No: R1931043

SET - 1

UNIT-IV

- 7. a) A source has an alphabet $\{A, B, C, D\}$ with corresponding [8M] probabilities $\{0.1, 0.2, 0.3, p\}$ with $0 \le p \le 1$. Design a Huffman code for the source and compare the average length of the Huffman code with the entropy of the source.
 - b) Explain how the Huffman algorithm is used to devise the source [7M] code.

(OR)

- 8. a) A message source generates one of four independent messages [8M] randomly every second. The probabilities of these messages are 0.35, 0.3, 0.25 and 0.1. Find the source entropy and develop Shannon-Fano code.
 - b) Give the statement of Shannon-Hartley theorem. Find the channel [7M] capacity if
 - (i) bandwidth = 10 MHz, average transmitted power = 5 W and N_{o} = 20 $\mu W/Hz$
 - (ii) bandwidth = 100 MHz, average transmitted power = 1 kW and $N_o = 10 \; \mu W/Hz$

Comment on the answers that obtained in (i) and (ii).

UNIT-V

9.	a)	What are the steps in Viterbi decoding algorithm? Explain.	[8M]
	b)	The parity check matrix of a (6, 3) LBC is given by	[7M]
		$H^{T} = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 & 1 \end{bmatrix}$. Find the generator matrix.	
		(OR)	
10.	a)	Show that the (3, 1) repetition code is a Hamming code. Also find	[8M]
		d_{min} . Verify that it is a single error correcting code or not.	

b) Consider a rate ½ convolutional encoder of your choice and give [7M] its trellis diagram description.

2 of 2