III B. Tech I Semester Regular Examinations, February-2022 DIGITAL COMMUNICATIONS

(Electronics and Communication Engineering)
Time: 3 hours
Max. Marks: 75
Answer any FIVE Questions ONE Question from Each unit All Questions Carry Equal Marks

UNIT-I

1. a) Draw the block diagram of PCM system and explain the function of each block.
b) A signal is obtained by the multiplication of $x_{1}(t)=A_{1} \sin \left(\omega_{o} t\right)$ and $x_{2}(t)=A_{2} \cos \left(\omega_{0} t\right)$. The resulting signal is to be sent by delta modulation method. Find the minimum step size required to avoid slope overload distortion.
(OR)
2. a) Draw the block diagram of closed-loop DPCM system and explain its operation.
b) Explain slope-overload noise and granular noise.

UNIT-II

3. a) What is the phase ambiguity problem of BPSK scheme? How is it overcome?
b) Sketch the constellation of QPSK scheme. Illustrate the effect of the attenuation on the constellation at the receiver.
(OR)
4. a) Distinguish between DPSK and DEPSK modulation schemes.
b) Draw the power spectral density of BASK, BPSK and BFSK signals.

UNIT-III

5. a) When the input noise is white, show that the impulse response of matched filter is $h(t)=K s\left(t_{o}-t\right)$, where K is a positive real constant and $s(t)$ is the input signal.
b) Explain the operation of non-coherent FSK receiver.
(OR)
6. a) Derive an expression for probability of error of BPSK modulation scheme.
b) Explain the working of coherent PSK receiver.

UNIT-IV

7. a) A source has an alphabet $\{A, B, C, D\}$ with corresponding probabilities $\{0.1,0.2,0.3, p\}$ with $0 \leq p \leq 1$. Design a Huffman code for the source and compare the average length of the Huffman code with the entropy of the source.
b) Explain how the Huffman algorithm is used to devise the source code.
(OR)
8. a) A message source generates one of four independent messages randomly every second. The probabilities of these messages are $0.35,0.3,0.25$ and 0.1 . Find the source entropy and develop Shannon-Fano code.
b) Give the statement of Shannon-Hartley theorem. Find the channel capacity if
(i) bandwidth $=10 \mathrm{MHz}$, average transmitted power $=5 \mathrm{~W}$ and $\mathrm{N}_{\mathrm{o}}=20 \mu \mathrm{~W} / \mathrm{Hz}$
(ii) bandwidth $=100 \mathrm{MHz}$, average transmitted power $=1 \mathrm{~kW}$ and $\mathrm{N}_{\mathrm{o}}=10 \mu \mathrm{~W} / \mathrm{Hz}$
Comment on the answers that obtained in (i) and (ii).
UNIT-V
9. a) What are the steps in Viterbi decoding algorithm? Explain.
b) The parity check matrix of a $(6,3)$ LBC is given by

$$
H^{T}=\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0
\end{array}\right] \text {. Find the generator matrix. }
$$

(OR)
10. a) Show that the $(3,1)$ repetition code is a Hamming code. Also find $d_{\text {min }}$. Verify that it is a single error correcting code or not.
b) Consider a rate $1 / 2$ convolutional encoder of your choice and give its trellis diagram description.

